—————




WHAT IS ?

(Representational State Transfer) is an architectural style
that provides guidelines for desighing web APIs.
It uses standard HTTP 1.1 methods like GET, POST, PUT, and
DELETE to work with server-side resources. Additionally,
APls provide pre-defined URLs that the client must use to
connect with the server.


https://www.baeldung.com/building-a-restful-web-service-with-spring-and-java-based-configuration
https://www.baeldung.com/building-a-restful-web-service-with-spring-and-java-based-configuration

What Is ?

(Remote Procedure Call) is an open-source data exchange
technology developed by Google using the HTTP/2 protocol.
It uses the Protocol Buffers binary format (Protobuf) for data
exchange. Also, this architectural style enforces rules that a

developer must follow to develop or consume web APIs.


https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/netty-http2
https://www.baeldung.com/spring-rest-api-with-protocol-buffers#1-introduction-to-protocol-buffers
https://www.baeldung.com/spring-rest-api-with-protocol-buffers#1-introduction-to-protocol-buffers

Guidelines vs. Rules

is a set of guidelines for designing web APIs without
enforcing anything. On the other hand, enforces rules by
defining a .proto file that must be adhered to by both client
and server for data exchange.


https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction

Underlying HTTP
Protocol

provides a request-response communication model built on

the HTTP 1.1 protocol. Therefore, when multiple requests reach the
server, it is bound to handle each of them, one at a time.

However, follows a client-response model of communication

for designing web APIs that rely on HTTP/2. Hence, allows
streaming communication and serves multiple requests
simultaneously. In addition to that, also supports unary
communication similar to



https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction

Data Exchange Format

typically uses JSON and XML formats for data transfer.
However, relies on Protobuf for an exchange of data over
the HTTP/2 protocol.


https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction

Serialization vs.
Strong Typing

, iIn most cases, uses JSON or XML that requires serialization
and conversion into the target programming language for both
client and server, thereby increasing response time and the
possibility of errors while parsing the request/response. However,

provides strongly typed messages automatically converted
using the Protobuf exchange format to the chosen programming
language.


https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction

Latency

utilizing HTTP 1.1 requires a TCP handshake for each

request. Hence, APls with HTTP 1.1 can suffer from latency
issues.
On the other hand, relies on HTTP/2 protocol, which uses

multiplexed streams. Therefore, several clients can send multiple
requests simultaneously without establishing a new TCP
connection for each one. Also, the server can send push
notifications to clients via the established connection.


https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction

Browser Support

APlIs on HTTP 1.1 have universal browser support.

However, has limited browser support because numerous
browsers (usually the older versions) have no mature support for
HTTP/2. So, it may require -web and a proxy layer to perform

conversions between HTTP 1.1 and HTTP/2. Therefore, at the
moment, gRPC is primarily used for internal services.


https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction

Code Generation
Features

provides no built-in code generation features. However,
we can use third-party tools like Swagger or Postman to
produce code for APl requests.
On the other hand, , using its protocol compiler, comes
with native code generation features, compatible with several
programming languages.


https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction

Conclusion

In this article, we compared two architectural styles for APIs,

and
We conclude that is handy in integrating microservices
and third-party applications with the core systems.
However, can find its application in various systems like

lIoT systems that require lightweight message transmission,
mobile applications with no browser support, and applications
that need multiplexed streams.


https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction
https://www.baeldung.com/grpc-introduction

